

Table of Contents

	Overview
	Why?

	How does it work?

	Screenshots

	Installation
	Docker

	Manual

	Configuration
	Location to config file

	Configuration Keys

	Implemented Checks
	DNS

	Elasticsearch

	FTP

	HTTP(S)

	ICMP

	IMAP(S)

	LDAP

	MSSQL

	MySQL

	POP3(S)

	PostgreSQL

	RDP

	SMB

	SMTP(S)

	SSH

	VNC

	Development
	Initial Setup

	Run Services

	Run Tests

	Modifying Documentation

Overview

Why?

The goal of the ScoringEngine is to keep track of service up time in a blue teams/red team competition.

How does it work?

The general idea of the ScoringEngine is broken up into 3 separate processes, Engine, Worker, and Web.

Engine

The engine is responsible for tasking Checks that are used to verify network services each round, and determining/saving their results to the database. This process runs for the entire competition, and will sleep for a certain amount of time before starting on to the next round.

Worker

The worker connects to Redis and waits for Checks to get tasked in order to run them against . Once it receives a
Check, it executes the command and sends the output back to the Engine.

Web

The web application provides a graphical view of the Competition. This includes things like a bar graph of all team’s scores as well as a table of the current round’s results. This can also be used to configure the properties of each service per team.

External Resources

We currently use MySQL [https://www.mysql.com/products/community/] as the database, and Redis [https://redis.io/] as the data store for tasks while they are getting scheduled.

Putting it all together

	The Engine starts

	The first Round starts

	The Engine tasks Checks out to the Workers

	The Workers execute the Checks and return the output to the Engine

	The Engine waits for all Checks to finish

	The Engine determines the results of each Check, and saves the results to the DB

	The Engine ends the Round

	The Engine sleeps for some time

	The second Round starts

	…

Screenshots

Scoreboard

[image: _images/scoreboard.png]

Overview

[image: _images/overview.png]

Team Services

[image: _images/team_services.png]

Specific Service

[image: _images/ssh_service.png]

Round Status

[image: _images/round_status.png]

Admin Team View

[image: _images/admin_team_view.png]

Installation

	Docker
	TestBed Environment

	Environment Variables

	Production Environment

	Manual
	Base Setup

	Web

	Engine

	Worker

Docker

Note

It takes a minute or 2 for all of the containers to start up and get going!

TestBed Environment

make rebuild-testbed-new

This command will build, stop any pre-existing scoring engine containers, and start a new environment. As part of the environment, multiple containers will be used as part of the testbed environment.

Environment Variables

We use certain environment variables to control the functionality of certain docker containers.

	SCORINGENGINE_OVERWRITE_DB

	If set to true, the database will be deleted and then recreated during startup.

	SCORINGENGINE_EXAMPLE

	If set to true, the database is populated with sample db, and the engine and worker containers will be paused. This is useful for doing development on the web app.

You can set each environment variable before each command executed, for example:

SCORINGENGINE_EXAMPLE=true make rebuild-new

Production Environment

Modify the bin/competition.yaml file to configure the engine according to your competition environment. Then, run the following make command to build, and run the scoring engine.

Warning

This will delete the previous database, exclude the ‘new’ part from the command to not rebuild the db.

make rebuild-new

Then, to ‘pause’ the scoring engine (Ex: At the end of the day):

docker-compose -f docker-compose.yml stop engine

To ‘unpause’ the engine:

docker-compose -f docker-compose.yml start engine

Manual

	Base Setup
	Install dependencies via apt-get

	Create engine user

	Download and Install pip

	Setup virtualenvironment

	Setup src directory

	Install scoring_engine src python dependencies

	Copy/Modify configuration

	Create log file locations (run as root)

	Copy rsyslog configuration

	Restart rsyslog

	Web
	Install MySQL Server

	Setup MySQL

	Install Nginx

	Setup SSL in Nginx

	Copy nginx config

	Setup web service

	Modify configuration

	Install uwsgi

	Start web

	Monitoring

	Engine
	Install Redis

	Setup Redis to listen on external interface

	Setup Engine service (run as root)

	Modify configuration

	Setup scoring engine teams and services

	Start engine service (must run as root)

	Monitor engine

	Worker
	Modify hostname

	Setup worker service (run as root)

	Modify configuration

	Start worker service (must run as root)

	Monitor worker

	Install dependencies for DNS check

	Install dependencies for HTTP/HTTPS check

	Install dependencies for most of the checks

	Install dependencies for SSH check

	Install dependencies for LDAP check

	Install dependencies for Postgresql check

	Install dependencies for Elasticsearch check

	Install dependencies for SMB check

	Install dependencies for RDP check

	Install dependencies for MSSQL check

	Install dependencies for SMTP/SMTPS check

Base Setup

Note

Currently, the only OS we have documentation on is Ubuntu 16.04.

Install dependencies via apt-get

apt-get update
apt-get install -y python3.5 wget git python3.5-dev build-essential libmysqlclient-dev

Create engine user

useradd -m engine

Download and Install pip

wget -O /root/get-pip.py https://bootstrap.pypa.io/get-pip.py
python3.5 /root/get-pip.py
rm /root/get-pip.py

Setup virtualenvironment

pip install virtualenv
su engine
cd ~/
mkdir /home/engine/scoring_engine
virtualenv -p /usr/bin/python3.5 /home/engine/scoring_engine/env

Setup src directory

git clone https://github.com/scoringengine/scoringengine /home/engine/scoring_engine/src

Install scoring_engine src python dependencies

source /home/engine/scoring_engine/env/bin/activate
pip install -e /home/engine/scoring_engine/src/

Copy/Modify configuration

cp /home/engine/scoring_engine/src/engine.conf.inc /home/engine/scoring_engine/src/engine.conf
vi /home/engine/scoring_engine/src/engine.conf

Create log file locations (run as root)

mkdir /var/log/scoring_engine
chown -R syslog:adm /var/log/scoring_engine

Copy rsyslog configuration

cp /home/engine/scoring_engine/src/configs/rsyslog.conf /etc/rsyslog.d/10-scoring_engine.conf

Restart rsyslog

systemctl restart rsyslog

Web

Install MySQL Server

apt-get install -y mysql-server
sed -i -e 's/127.0.0.1/0.0.0.0/g' /etc/mysql/mysql.conf.d/mysqld.cnf
systemctl restart mysql

Setup MySQL

mysql -u root -p<insert password set during installation>
CREATE DATABASE scoring_engine;
CREATE USER 'engineuser'@'%' IDENTIFIED BY 'enginepass';
GRANT ALL on scoring_engine.* to 'engineuser'@'%' IDENTIFIED by 'enginepass';

Install Nginx

apt-get install -y nginx

Setup SSL in Nginx

mkdir /etc/nginx/ssl
cd /etc/nginx/ssl
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout server.key -out server.crt

Copy nginx config

cp /home/engine/scoring_engine/src/configs/nginx.conf /etc/nginx/sites-available/scoring_engine.conf
ln -s /etc/nginx/sites-available/scoring_engine.conf /etc/nginx/sites-enabled/
rm /etc/nginx/sites-enabled/default
systemctl restart nginx

Setup web service

cp /home/engine/scoring_engine/src/configs/web.service /etc/systemd/system/scoring_engine-web.service

Modify configuration

vi /home/engine/scoring_engine/src/engine.conf

Install uwsgi

pip install uwsgi

Start web

systemctl enable scoring_engine-web
systemctl start scoring_engine-web

Monitoring

journalctl -f _SYSTEMD_UNIT=scoring_engine-web.service
tail -f /var/log/scoring_engine/web.log
tail -f /var/log/scoring_engine/web-nginx.access.log
tail -f /var/log/scoring_engine/web-nginx.error.log

Engine

Install Redis

apt-get install -y redis-server

Setup Redis to listen on external interface

sed -i -e 's/bind 127.0.0.1/bind 0.0.0.0/g' /etc/redis/redis.conf
systemctl restart redis

Setup Engine service (run as root)

cp /home/engine/scoring_engine/src/configs/engine.service /etc/systemd/system/scoring_engine-engine.service

Modify configuration

su engine
vi /home/engine/scoring_engine/src/engine.conf

Setup scoring engine teams and services

su engine
vi /home/engine/scoring_engine/src/bin/competition.yaml
source /home/engine/scoring_engine/env/bin/activate
/home/engine/scoring_engine/src/bin/setup

Start engine service (must run as root)

systemctl start scoring_engine-engine

Monitor engine

journalctl -f _SYSTEMD_UNIT=scoring_engine-engine.service
tail -f /var/log/scoring_engine/engine.log

Worker

Modify hostname

hostname <INSERT CUSTOM HOSTNAME HERE>

Setup worker service (run as root)

cp /home/engine/scoring_engine/src/configs/worker.service /etc/systemd/system/scoring_engine-worker.service

Modify configuration

Change REDIS host/port/password fields to main engine host::

vi /home/engine/scoring_engine/src/engine.conf

Modify worker to customize number of processes. Append ‘–concurrency <num of processes>’ to the celery command line. If not specified, it defaults to # of CPUs.

vi /home/engine/scoring_engine/src/bin/worker

Start worker service (must run as root)

systemctl enable scoring_engine-worker
systemctl start scoring_engine-worker

Monitor worker

journalctl -f _SYSTEMD_UNIT=scoring_engine-worker.service
tail -f /var/log/scoring_engine/worker.log

Install dependencies for DNS check

apt-get install -y dnsutils

Install dependencies for HTTP/HTTPS check

apt-get install -y curl

Install dependencies for most of the checks

apt-get install -y medusa

Install dependencies for SSH check

pip install paramiko

Install dependencies for LDAP check

apt-get install -y ldap-utils

Install dependencies for Postgresql check

apt-get install -y postgresql-client

Install dependencies for Elasticsearch check

pip install requests

Install dependencies for SMB check

pip install pysmb

Install dependencies for RDP check

apt-get install -y freerdp-x11

Install dependencies for MSSQL check

apt-get install -y apt-transport-https
curl -s https://packages.microsoft.com/keys/microsoft.asc | apt-key add -
curl -s https://packages.microsoft.com/config/ubuntu/16.04/prod.list | tee /etc/apt/sources.list.d/msprod.list
apt-get update
ACCEPT_EULA=Y apt-get install -y locales mssql-tools unixodbc-dev
echo "en_US.UTF-8 UTF-8" >> /etc/locale.gen
locale-gen

Install dependencies for SMTP/SMTPS check

cp /home/engine/scoring_engine/src/scoring_engine/checks/bin/smtp_check /usr/bin/smtp_check
cp /home/engine/scoring_engine/src/scoring_engine/checks/bin/smtps_check /usr/bin/smtps_check
chmod a+x /usr/bin/smtp_check
chmod a+x /usr/bin/smtps_check

Configuration

Location to config file

Docker

Note

This file needs to be edited before running the make commands.

<path to source root>/docker/engine.conf.inc

Manual

Note

Need to restart each scoring engine service once the config is modified.

/home/engine/scoring_engine/src/engine.conf

Configuration Keys

Note

Each of these config keys can be expressed via environment variables (and take precendence over the values defined in the file). IE: To define round_time_sleep, I’d set SCORINGENGINE_ROUND_TIME_SLEEP=3.

	Key Name

	Description

	checks_location

	Local path to directory of checks

	round_time_sleep

	Amount of time (seconds) the engine sleeps between rounds

	worker_refresh_time

	Amount of time (seconds) the engine will sleep for in-between polls of worker status

	worker_num_concurrent_tasks

	The number of concurrent tasks the worker will run. Set to -1 to default to number of processors.

	worker_queue

	The queue name for a worker to pull tasks from. This can be used to control which workers get which service checks. Default is ‘main’

	timezone

	Local timezone of the competition

	debug

	Determines wether or not the engine should be run in debug mode (useful for development)

	db_uri

	Database connection URI

	cache_type

	The type of storage for the cache. Set to null to disable caching

	redis_host

	The hostname/ip of the redis server

	redis_port

	The port of the redis server

	redis_password

	The password used to connect to redis (if no password, leave empty)

Implemented Checks

DNS

Queries a DNS server for a specific record

Custom Properties:

	qtype

	type of record (A, AAAA, CNAME, etc)

	domain

	domain/host to query for

Elasticsearch

Uses python requests to insert message and then query for same message

Custom Properties:

	index

	index to use to insert the message

	doc_type

	type of the document

FTP

Uses python ftplib to login to an FTP server, upload a file, login again to FTP and download file

Uses Accounts

Custom Properties:

	remotefilepath

	absolute path of file on remote server to upload/download

	filecontents

	contents of the file that we upload/download

HTTP(S)

Sends a GET request to an HTTP(S) server

Custom Properties:

	useragent

	specific useragent to use in the request

	vhost

	vhost used in the request

	uri

	uri of the request

ICMP

Sends an ICMP Echo Request to server

Custom Properties: none

IMAP(S)

Uses medusa to login to an imap server

Uses Accounts

Custom Properties:

	domain

	domain of the username

LDAP

Uses ldapsearch to login to ldap server. Once authenticated, it performs a lookup of all users in the same domain

Uses Accounts

Custom Properties:

	domain

	domain of the username

	base_dn

	base dn value of the domain (Ex: dc=example,dc=com)

MSSQL

Logs into a MSSQL server, uses a database, and executes a specific SQL command

Uses Accounts

Custom Properties:

	database

	database to use before running command

	command

	SQL command that will execute

MySQL

Logs into a MySQL server, uses a database, and executes a specific SQL command

Uses Accounts

Custom Properties:

	database

	database to use before running command

	command

	SQL command that will execute

POP3(S)

Uses medusa to login to an pop3 server

Uses Accounts

Custom Properties:

	domain

	domain of the username

PostgreSQL

Logs into a postgresql server, selects a database, and executes a SQL command

Uses Accounts

Custom Properties:

	database

	database to use before running command

	command

	SQL command that will execute

RDP

Logs into a system using RDP with an account/password

Uses Accounts

Custom Properties: none

SMB

Logs into a system using SMB with an account/password, and hashes the contents of a specific file on a specific share

Uses Accounts

Custom Properties:

	share

	name of the share to connect to

	file

	local path of the file to access

	hash

	SHA256 hash of the contents of the file

SMTP(S)

Logs into an SMTP server and sends an email

Uses Accounts

Custom Properties:

	touser

	address that the email will be sent to

	subject

	subject of the email

	body

	body of the email

SSH

Logs into a system using SSH with an account/password, and executes command(s)

Note

Each command will be executed independently of each other in a separate ssh connection.

Uses Accounts

Custom Properties:

	commands

	‘;’ delimited list of commands to run (Ex: id;ps)

VNC

Connects and if specified, will login to a VNC server

Uses Accounts (optional)

Custom Properties: none

Development

Note

Currently we support 2 ways of working on the Scoring Engine. You can either use the existing Docker environment, or you can run each service locally using python 3. If you choose to do your development locally, we recommend using virtual environments. [http://docs.python-guide.org/en/latest/dev/virtualenvs/#lower-level-virtualenv]

Initial Setup

These steps are for if you want to do your development locally and run each service locally as well.

Create Config File

cp engine.conf.inc engine.conf
sed -i '' 's/debug = False/debug = True/g' engine.conf

Hint

If debug is set to True, the web ui will automatically reload on changes to local file modifications, which can help speed up development.

Install Required Dependencies

pip install -e .

Populate Sample DB

python bin/setup --example --overwrite-db

Run Services

Web UI

python bin/web

Then, access localhost:5000 [http:localhost:5000]

Credentials

	Username

	Password

	whiteteamuser

	testpass

	redteamuser

	testpass

	team1user1

	testpass

	team2user1

	testpass

	team2user2

	testpass

Note

The engine and worker do NOT need to be running in order to run the web UI.

Engine

Both the engine and worker services require a redis server to be running. Redis can be easily setup by using the existing docker environment.

python bin/engine

Worker

python bin/worker

Run Tests

We use the pytest [https://docs.pytest.org/en/latest/] testing framework.

Note

The tests use a separate db (sqlite in memory), so don’t worry about corrupting a production db when running the tests.

First, we need to install the dependencies required for testing.

pip install -r tests/requirements.txt

Next, we run our tests

pytest tests

Hint

Instead of specifying the tests directory, you can specify specific file(s) to run: pytest tests/scoring_engine/test_config.py

Modifying Documentation

We use sphinx [http://www.sphinx-doc.org/en/master/] to build the documentation.

First, we need to install the dependencies required for documentation.

pip install -r docs/requirements.txt

Next, we build our documentation in html format.

cd docs
make html
open build/html/index.html

Index

Screenshots

Scoreboard

[image: _images/scoreboard.png]

Overview

[image: _images/overview.png]

Team Services

[image: _images/team_services.png]

Specific Service

[image: _images/ssh_service.png]

Round Status

[image: _images/round_status.png]

Admin Team View

[image: _images/admin_team_view.png]

DNS

Queries a DNS server for a specific record

Custom Properties:

	qtype

	type of record (A, AAAA, CNAME, etc)

	domain

	domain/host to query for

Elasticsearch

Uses python requests to insert message and then query for same message

Custom Properties:

	index

	index to use to insert the message

	doc_type

	type of the document

FTP

Uses python ftplib to login to an FTP server, upload a file, login again to FTP and download file

Uses Accounts

Custom Properties:

	remotefilepath

	absolute path of file on remote server to upload/download

	filecontents

	contents of the file that we upload/download

HTTP(S)

Sends a GET request to an HTTP(S) server

Custom Properties:

	useragent

	specific useragent to use in the request

	vhost

	vhost used in the request

	uri

	uri of the request

ICMP

Sends an ICMP Echo Request to server

Custom Properties: none

IMAP(S)

Uses medusa to login to an imap server

Uses Accounts

Custom Properties:

	domain

	domain of the username

LDAP

Uses ldapsearch to login to ldap server. Once authenticated, it performs a lookup of all users in the same domain

Uses Accounts

Custom Properties:

	domain

	domain of the username

	base_dn

	base dn value of the domain (Ex: dc=example,dc=com)

MSSQL

Logs into a MSSQL server, uses a database, and executes a specific SQL command

Uses Accounts

Custom Properties:

	database

	database to use before running command

	command

	SQL command that will execute

MySQL

Logs into a MySQL server, uses a database, and executes a specific SQL command

Uses Accounts

Custom Properties:

	database

	database to use before running command

	command

	SQL command that will execute

POP3(S)

Uses medusa to login to an pop3 server

Uses Accounts

Custom Properties:

	domain

	domain of the username

PostgreSQL

Logs into a postgresql server, selects a database, and executes a SQL command

Uses Accounts

Custom Properties:

	database

	database to use before running command

	command

	SQL command that will execute

RDP

Logs into a system using RDP with an account/password

Uses Accounts

Custom Properties: none

SMB

Logs into a system using SMB with an account/password, and hashes the contents of a specific file on a specific share

Uses Accounts

Custom Properties:

	share

	name of the share to connect to

	file

	local path of the file to access

	hash

	SHA256 hash of the contents of the file

SMTP(S)

Logs into an SMTP server and sends an email

Uses Accounts

Custom Properties:

	touser

	address that the email will be sent to

	subject

	subject of the email

	body

	body of the email

SSH

Logs into a system using SSH with an account/password, and executes command(s)

Note

Each command will be executed independently of each other in a separate ssh connection.

Uses Accounts

Custom Properties:

	commands

	‘;’ delimited list of commands to run (Ex: id;ps)

VNC

Connects and if specified, will login to a VNC server

Uses Accounts (optional)

Custom Properties: none

 _images/ssh_service.png
SSH

Host: 102.1.2

Port: 22

Accounts
Username

ttesterson

rpeterson

Checks

Show 10 entries

Round
43
a2
4
40
39
38
37
36
35

34

Showing 1 to 10 of 43 entries.

Password

- a -

Reason

Successful Content Match
Job Timed Out

Unsuccessful Content Match
Successful Content Match
Unsuccessful Content Match
Successful Content Match
Successful Content Match
Unsuccessful Content Match
Unsuccessful Content Match

Unsuccessful Content Match

Search:

Timestamp

2017-12-28 12:

2017-12-28 12:

2017-12-28 1;

2017-12-28 12:49:41

2017-12-28 12:49:41

2017-12-28 12:

2017-12-28 12:

2017-12-28 12:

2017-12-28 12:

2017-12-28 12:

Previous -2 3 4 5 Next

_images/team_services.png
Team1
Place: 4
‘Score: 24100 points

Service
SSH

HTTP

HTTPS
MysQL
FTPDownload
FTPUpload
DNS
Postgresal
POP3

IMAP

SMTP

VNG

Host

10212

10213

10213

10214

10215

10215

10216

10217

10218

10218

10218

102.1.1

Port

3306

21

21

5432

110

143

25

5900

BBEEEEBBBBEB;

Score Earned

1900

2600

2200

2000

1100

1200

2000

2000

2100

2200

2800

2000

Max Score

4300

4300

4300

4300

2150

2150

4300

4300

4300

4300

4300

4300

% Earned

60

51

46

51

55

46

46

a8

51

65

46

Trending
AXXIVRIRRY
R/IRIRIRRK
IRIRIKRSIRSY
VRRIRRI RSV
AR/ARIAXKXKY
RIVIIRRSIIY
VERRARSVARK
VIRAXRKXKK
VIRRSIRSIIR
RI/RIAXRX
VRIS SIVIS

RIRRIIARY

_images/round_status.png
Current Round Status
Round Stats]
Round Progress
Round Progress z ARl RS RRThRARNRNN
Team1
vsers ! AREERRTwEwwwW
Settings N feamz2
Teams
Team3
Team1 SSlRRTmRRNN
Team2 Teamd
Team3
Teams
Toam4 L S W A Wi A N MY
o m“
Teams
Team?
Team7 e LsLLLLL LA ALMLAA WY
Teams Joams

71%

_images/scoreboard.png
Scoreboard

— points
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
o

Teamt Team2 Team3 Teamd Teams Team Team? Team
[Teams [Team6 [~ Team [~ Team7 [Team3 [——] Team2 [——] Teams [Teams

20000

18000

16000

14000

12000

10000

8000

6000

4000

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/admin_team_view.png
Scoring Engine

Round Stats B Team?2
Round Progress E
Users 2 oue
Settings SSH
Teams Host: testbed_ssh
Port: 22
feemt Accounts
Teamz Username Password
Team3 — PR
Teamd rpeterson s
feams Environments
Teamé Matching Regex Properties
festerson Name Value
command Is -1 nome
e Name Value
command ps
Checks
Round Result Reason Command Timestamp
2 Pass | Successful Content sshpass -p ‘otherpass’ ssh -0 2017-12-28 16:14:37
Match

-0 PubkeyAuthentication=no -0

© UserKnownHostsFile=/dev/null -0
StrictHostKeyChecking=no
'rpeterson@testbed_ssh’ -p 22 s -I
/home'

1 Pass Successful Content sshpass -p 'testpass' ssh -0 2017-12-28 16:13:16
Match

-0 PubkeyAuthentication=no -0

© UserKnownHostsFile=/dev/null -0
StrictHostKeyChecking=no
‘ttesterson@testbed_ssh' -p 22 'ls
-l /home'

HTTP

HTTPS

MysQL

FTPDownload

FTPUpload

_images/overview.png
Round 33

2017-12-28 12:38:43

Team Current
Name

HTTP. HTTPS MysaL FTPDownload FTPUpload DNS Postgresql || POP3 IMAP i VNC
Team6 19150
Team3 18950
Teamd 18800
Team1 18450
Team8 18350
Team2 18300
Team?7 18250

Team5 17700

Want a json formatted version of this data (including ip addresses)? Here

_static/down.png

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Overview

 		
 Why?

 		
 How does it work?

 		
 Engine

 		
 Worker

 		
 Web

 		
 External Resources

 		
 Putting it all together

 		
 Screenshots

 		
 Scoreboard

 		
 Overview

 		
 Team Services

 		
 Specific Service

 		
 Round Status

 		
 Admin Team View

 		
 Installation

 		
 Docker

 		
 TestBed Environment

 		
 Environment Variables

 		
 Production Environment

 		
 Manual

 		
 Base Setup

 		
 Web

 		
 Engine

 		
 Worker

 		
 Configuration

 		
 Location to config file

 		
 Docker

 		
 Manual

 		
 Configuration Keys

 		
 Implemented Checks

 		
 DNS

 		
 Elasticsearch

 		
 FTP

 		
 HTTP(S)

 		
 ICMP

 		
 IMAP(S)

 		
 LDAP

 		
 MSSQL

 		
 MySQL

 		
 POP3(S)

 		
 PostgreSQL

 		
 RDP

 		
 SMB

 		
 SMTP(S)

 		
 SSH

 		
 VNC

 		
 Development

 		
 Initial Setup

 		
 Create Config File

 		
 Install Required Dependencies

 		
 Populate Sample DB

 		
 Run Services

 		
 Web UI

 		
 Engine

 		
 Worker

 		
 Run Tests

 		
 Modifying Documentation

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

